AD-A230 444

RADC-TR-90-282
Final Technical Report
December 1990

THE BBN KNOWLEDGE ACQUISITION
PROJECT: PHASE TWO

tt

BBN Systems and Technologies Corporation

DTIC

gn E1LECTE
R, DEC 281990

s S WL i, NS Qoo o L

Sponsored by
Defense Advanced Research Projects Agency R
DARPA Order No. 5290 D s

;

:

R

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the U.S.
Government.

Rome Air Development Center
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

%
~
\
£
St
Ty,
e
}xavé
W

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Services (NTIS) At
NTIS it will be releasable to the general public, including foreign natioas.

RADC-TR~90-282 has been reviewed and is approved for publication.

e Nasze 0] (et

SHARON M. WALTER
Project Engineer

e et VG

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

BILLY G. OAKS
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your
organization, please notify RADC (COES) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

THE BBN KNOWLEDGE ACQUISITION PROJECT: PHASE TWO

Mgrk H. Burstein
Tom Reinhardt
Richard Shapiro

Contractor: Bolt, Beranek, and Newman Inc.

Contract Number: F30602-85-C-0005

Effectivé Date of Contract: 9 January 1987

Contract Expiration Date: 30 September 1989

Short Title of Work: Expert Assistant for Knowledge Acquisition
‘Program Code Number: 4E20 '

Period of Work Covered: Jan 87 - Sep 89

Principal Investigator: Mark H. Bﬁrstgiﬁ
Phone: (617) 873-2791

RADC Project Engineer: Sharon M. Walter
Phone: (315) 330-3577

Approved for public release; distribution unlimited.

This research was supported by’ the Defense Advanced Research
Projects Agency of thé Department of Defense and was
monitored by Sharon M. Walter, RADC (COES), Griffiss AFB

NY 13441-5700 under Contract F30602-85-C-0005.

Ii

REPORT DOCUMENTATION PAGE | G arotcores

Pubic repartng burden for ths colecton of informauon is estimated toaverage ¢ hour per response, Nchuding the tme for revewng NSTUCHONS. SearchNg eosting Cts sauces,
gaherng and mantaning the data nesded, and cormpletng and feviewing thacolecton of informaton Serd cormmirts regarding this birdien estrnets of any other asoect of ths
cclecton of rfomation, rauding suggestions for reducng this burden, ta Washington Headguaters Services, Drectorate for nfomanon Operstons andReports: 1215 Jefferson
Davis Highway, Sue 1204, Arington VA 222024302, and to the Cifice of Managermant and Budges, Paperwaork Reductian Project (0704-0184), Washington, CC 2053

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED/:

November 1990 Final Jan .87 -~ Sep 89

4, TITLE AND SUBTITLE 7 5. FUNDING NUMBERS

THE BBN KNOWLEDGE ACQUISITION PROJECT: PHASE TWO ¢ - F30602-85-C~-0005

’ PE - 62301E

6. AUTHOR(S) PR’- E290

Mark H. Burstein, Tom Reinhardt, Richard Shapiro gﬁ = gg

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) 8. PERFORMING ORGANIZATION
BBN Systems and Technologies Corpcration REPORT NUMBER

10 Moulton Street
Cambridge MA 02138

9. SPONSORING/MONITORING AGENCY NAME(S) AWD‘ADDRESS(ES) N\\ 10. SPONSORING/MONITORING
Defense Advanced ., Rome Air Development Center (COES)| AGENCY-REPORT NUMBER

Research Projects Agercy Griffiss AFB NY 13441~-5700 1 RADC-TR-90-282
1400 Wilson Boulevard - . . .
.Arlington VA 22209-2308

11. SUPPLEMENTARY NOTES
RADC Project Engineer: Sharon M. Walter/COES/(315) 330-3577

12a DISTR!BUTION/AV_AILABIUTY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited. .

13. ABSTRACT Maxirusm 200 worcss)

This document presents the final report on Phase Two of the BBN Knowledge Acquisition
Project. It includes a brief overview of the project, and a review of KREME, the
Knowledge Representation Editing and Modeling Environment developed during the project.
KREME was designed to ease the problems involved in the development and maintenance

‘ of large knowledge based systems, to support experiments with knowledge acquisition
and knowledge engineering techniques, and to provide a usable system for knowledge
acquisition for knowledge based systems.

14. SUBJECT TERMS 15 NUMBER OF PAGES
Knowledge Base Editor, Knowledge Acquisition, Knowledge 56
Representation, KREME, Frame 16. PRICE CODE
17. %%%%}I&TCLASSIFICATION 18. %%CT%%T;A%%\SSIFICATION 19. %%CAURITY CLASSIFICATION [20. UMITATION OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED Ut?ém%EFIED SAR
NSN 7540-01-280-5500 Starcwa Fom 298 (Rev 2 89)

Prescibed by ANS! Stdt 23918
298-102

Table of Contents

1. Introduction

2. The New KREME Environment

2.1 KREME Overview and Functional Structure
2.2 The New KREME Desktop Interface

2.2.1 Component Windows
2.3 Window Operations

2.3.1 Window Display Operations

3. Extended Classification in KREME

4, KREME and SFL in CLOS

4.1 A Meta-class based Frame system
4.1.1 Integrating Objects and Frames

4.2 Design and Implementation

4.3 Results of the Experiment

5. Applications of KREME Technology

5.1 KREME Applications and Spinoffs
5.2 SFL and TARL
5.2.1 SFL
5.22 TARL
5.3 A KREME Knowledge Base for Document Retrieval
5.3.1 DEARS
5.3.2 INDEXER
5.3.3 Initial Study

Accesion For

6. Conclusion NTIS CRA&I

DTIC TAB
U .annotiiced
Justification

APPENDIX A. Test Plan

\
N
0
0

By

DIt ibatios:]

I

|

Avaiability Codes

. Avail a..¢]or
Dist Special

o st]

BBN Systems and Technologies Corporation

DR oo

15

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:

BBN Systems and Technologies Corporation

List of Figures

KREME Functional Description

KREME Internal Object Functional Decomposition
Original KREME Editor when Editing a Concept
KREME'’s new Desktop Interface when Editing a Concept
Subsumption Hierarchies in KREME Frame Language

A KREME Restriction Hierarchy Graph with Boolean Restrictions
Resulting KREME CONCEPT Hierarchy Graph
SPROKET system overview

Relationship between Concepts and Flavors in SFL

The SFL Editor Interface

The TARL Procedure Editor

Goals and Procedures in TARL

10
16
17
18
25
27
28
29
30

BBN Systems and Technologies Corporation

\/ Abstract a-)

This document presents the final report on Phase Two of the BBN Knowledge Acquisition|Project. It incjudes an
overview of the project, and a, review of KREME, the Knowledge Representation Editing and Nodeling
Environment developed during the project. KREME was designed to ease the problems involved in the
q/aevelopment and maintenance of large knowledge based systems, to support experiments with knowledge
acquisition and knowledge engineering techniques, and to provide a usable system for knowledge acquisition for
knowledge based systems. During Phase One of the project KREME editors for Frames, Rules and Procedures were
developed. Techniques were also developed for consistency maintenance and macro editing of knowledge bases.
During Phase Two, refincments were made to the KREME Frame Language and Editor, with an eye toward
i real-world applications and portability. These refinements included extension of the frame language and the frame
} classifier, to allow for the expression of a wider variety of constraints on the represented knowledge. A new
interface was also designed and implemented, enabling more flexible editing and browsing of knowledge bases.
KREME was also converted to run in Common Lisp using the CLOS object system, in preparation for its use on
other hardware platforms. Phase Two also included experiments in the use of KREME tools in the Common Lisp

environment, in conjunction with a tool for document indexing and retrieval. //

(Fe)

|

BBN Systems and Technologies Corporation

1. Introduction

This is the Final Report for Phase Two of the BBN Knowledge Acquistion Project. This research was
supported by the Defense Advanced Research Projects Agency of the Department of Defense and was monitored by
the Rome Air Development Center (RADC) under contract number F30602-85-C-0005.

The goal of this project was to create a useable and extensible knowledge engineering environment that would
be capable of handling very large knowledge bases and support experiments with knowledge engineering
techniques. During Phase One of the project we created KREME, the Knowledge Representation Editing and
Modeling Environment. KREME is an extensible experimental environment for developing and editing large
knowledge bases in a variety of representation styles. It provided tools for effective viewing and browsing in each
kind of represenation, automatic consistency checking, macro-editing facilities to reduce the burdens of large scale
knowledge base refision and some experimental automatic generalization and acquisition facilities. KREME was
designed to facilitate the process of developing and editing representations of knowledge about a domain, while
minimizing the classic problems of knowledge acquisition and knowledge base maintenance that arise during the
development cycle of large expert systems. Knowledge engineers and subject matter experts with some knowledge
of basic knowledge representation techniques will find it easy to use KREME to acquire, edit, and view from
multiple perspectives knowledge bases that are several times larger than those found in most current systems.

Du “ng Phase Two of the project, our focus of attention was on refinements to the KREME Frame Editing
environment, gearing that system to be even more useful in real-world tasks. We began by extending the semantic
scope of the language so that knowledge engineers could more carefully encode constraints on the frames that they
represented within a knowledge base for an application. We then rewrote the interface modules for the environment
to take advantage of the capabilities and flexibility of a "desktop” style windowing environment, while at the same
time introducing the notion of "window clusters” in order to retain the power of we had found in presenting multiple
views on aspects of represented objects all at one time. We also converted the KREME system to CLOS and began
experiments with integrating KREME’s knowledge representation facilities into an environment requiring ongoing
manual and semi-automatic knowlege acquisition and knowledge refinement, namely, a document indexing and
retrieval system.

This report reviews our work on the revised version of KREME, BBN’s Knowledge Representation, Editing
and Modeling Environment, including our development of extended classification techniques and a new interface
design for KREME. We also briefly describe our conversion of KREME to run under CLOS, the Common Lisp
Object System, and an experiment in a more thorough integration of KREME into CLOS using the meta-object
protocol. 'We conclude with a chapter on the some of tiie projects and systems that have adapted or incorporated
KREME technology into them, to give a flavor for how it has been used.

The initial version of KREME was developed during Phase One by Mark Burstein, Glenn Abrett, Albert
Boulanger and Richard Shapiro. That system included a family of editors in a single environment for knowledge

BBN Systems and Tecknologies Corporation

expressed in Frames, Rules and Procedures. The revised KREME frame editing system was written using CLCS,
the Common Lisp Object System. A new interface, designed and developed by Richard Shapiro and Mark Burstein
combined the flexibility of a "desktop” windowing environment with the capabilities of constraint frames composed
of multiple windows. The conversion of the representation language and classifier from Symbolics Flavors to
CLOS was done by the team of Richard Shapiro, Tom Reinhardt and Mark Burstein. The experiment with CLOS
meta-object protocol was done by Tom Reinhardt.

Chapter 2 of this document reviews the functional structure of the KREME system, and describes the design
of the revised KREME interface. Chapter 3 reviews our work on the extended classifier algorithm that supports a
classification over a wider semantic base than the original KREME and NIKL languages did. Chapter 4 reviews our
efforts at converting a portion of KREME to CLOS, and including an experiment in integrating KREME Frame
semantics directly into the CLOS Meta-object protocol. For more information on these subjects, readers are referred
to the Phase Two Technical Report [Burstein ct al. 89a) and the KREME User’s Manual [Burstein et al. 89b].
Chapters 5 gives a brief look at some of the uses that KREME technology ias been put to. After a brief overview of
KREME applications, we give a describe SFL and TARL, the representation tools for the SPROKET simufation
environment. SFL and TARL are based directly on the KREME frame and procedures languages and editors. We
also describe some KREME-related work on INDEXER, an on-line document retrieval system. Appendix A
describes the Test Plan for the loading and startup of the revised KREME Frame Editor.

BBN Systems and Technologies Corporation

2. The New KREME Environment

In this chapter, we describe the overall design of the new KREME environment, and how it appears to the
user. The first section gives an overview of the KREME architecture. The next section talks about the redesigned
interface, and describes the appearance of the screen when using KREME. For a more complete description, see the
KREME User’s Manual [Burstein et al. 89b].

2.1 KREME Overview and Functional Structure

The current version of KREME provides, within a uniform environment, a number of special purpose editing
facilities that permit knowledge to be represented and viewed in a variety of formalisms appropriate to its use, rather
than forcing all knowledge to be represented in a single, unitary formalism. In addition to a general editing
environment, KREME provides tools to do the kinds of validation and consistency checking so essential during the
development or modification of knowledge bases. As the size of knowledge bases grows, and more people become
involved in their development, this aspect of knowledge acquisition becomes increasingly important. In the hybrid
or multi-formalism representational systems that are becoming prevalent [Rich 82, Brachman 83, Vilain 85],
techniques must be provided for consistency checking not only within a single representational system, but between
related systems.

Our approach to consistency maintenance has been to develop a knowledge integration subsystem that
includes an automatic frame classifier and facilities for inter-language consistency maintenance. The frame
classifier automatically maintains logical consistency among all of the frames or conceptual class definitions in a
KREME frame base. In addition, it can discover implicit class relationships, since it will determine when one
definition is logically subsumed by another even when the knowledge engineer has not explicitly stated that
relationship. We also explored inter-language consistency maintenance facilities for detecting inconsistencies in
references to frames in knowledge bases specified using other representation languages (e.g., rules, procedures).
However, these tools are not yet ready to be included in the editing environment.

A second important area of investigation in developing the KREME editing environment has been the attempt
to provide facilities for large-scale revisions of portions of a knowledge base. Our experience indicates that the
development of an expert system inevitably requires systematic, large scale revisions of portions of the developed
representation. This is often causcd by the addition or redefinition of a task the system is to perform. These kinds
of systematic changes to a knowledge base have, to date, only been possible by painstaking piecemeal revision of
cach affected element, one at a time. Our initial approach has been to provide a macro-editing facility, in which the
required editing operations can be demonstrated by example and applied to specified sets of knowledge structures
automatically. We plan to provide a library of such generic macro-editing operations for the most common and
conceptually simple (though potentially difficult to describe) operations during phase two of the project.

BBN Systems and Technologiés Corporation

Finally, we have begun to investigate techniques for automatic generalization of concepts defined in a
knowledge base. We will briefly describe these experiments as well, in the section on knowledge extension.

A key design goal for KREME was to build an environment in which existing knowledge representation
languages, appropriate to diverse types of knowledge, could be integrated and organized as components of a
coherent global representation system. The current KREME Knowledge Editor can be thought of as an extensible
set of globally coherent operations that apply across a number of related knowledge representation editors, each
tailored to a specific type of knowledge. Our approach has been to integrate several existing representation
languages in an open ended architecture that allows the extension of each of these languages. In addition, we have
provided for the incorporation of addiiional representation languages to handle additional types of knowledge.

Underlying the entire system is a strong notion of meta-level knowledge about knowiedge representation and
knowledge acquisition. The representation languages were implemented based on a careful decomposition of
existing knowledge representation techniques, implemented as combinable objects using FLAVORS [Keene and
Moon 85] in the original version and CLOS [Bobrow et al. 88] classes in the new system. By organizing this
meta-level knowledge base modularly, behavioral objects implementing such notions as inheritance and
subsumption could be "mixed in" to a variety of representational subsystems making the incorporation of new
representations and their editors a reasonably straightforward process. That is, each object in the meta-knowledge
base encodes some aspect of a traditional representational technique, and is responsible for its own display, editing
and internal forms. h

The basic KREME frame-editing environment is composed of a number of components, designed to be
reusable and reconfigurable for a variety of knowledge representation language editng tasks. The basic
organization of the system as a set of modules is displayed in figure 2-1

Extended KREME Extended
Frame Repressntation | Clx 3"”91]
Language . assifie

Revised KREME
Editing System

o 1

New KREME User Editing Environment
With Clustered Windows

Figure 2-1: KREME Functicnal Description

BBN Systems and Technologies Corporation

These pieces of functionality are organized as “mixins", reusable functional components that comprise the
basic structurcs of frame, role, and slot definitions. Since KREME is built using an object-oriented substrate
(Symbolics FLAVORs {Keene and Moon 85] in the original version, CLOS classes [Bobrow et al. 88] in the new
version), these pieces of functionality are parts of the definitions of objects in the underlying object system. The
basic classes of functionality are:

¢ Language Definition and Classification Objects
o Editor Interaction Objects (for Display and Editing Actions)
¢ Window Management Tools

The decomposition of the functionality of the basic representation, classification and editing facilities into
their component object types is displayed in figure 2-2.

Basic
Classifiable
Object

CLASSIFIER

ﬁ

Frame
Language
Definition

Editor
Item

Editing
System

Slot
Editor
Item

Editor
Item

Concept
Editor
Item

Editor Interface Displays & Editor Commands

Figure 2-2: KREME Internal Object Functionai Decomposition

As was the case with the original KREME system, these components can be reused with a variety of language
definitions, so the basic editor facilities can (and have) been used for a number of different kinds of editing tools,
including:

* A CLOS Browser
¢ An application-specific Rule Editor
¢ An cditor for declarative representations of Frames, Goals and Procedures for a simulation environment

» Other application-specific editing tools.

BBN Systems and Technologies Corporation

For a more complete description of the original KREME design, see [Abrett and Burstein 87].

2.2 The New KREME Desktop Interface

The original KREME system was designed as a set of "views", each composed of a set of windows in a fixed
configuration, occupying the whole workstation screen. Each view focused on one kind of representation, a
concept, a role, a rule or a procedure, and filled the windows of the view with information about different aspects of
that kind of representational object. Only one kind of knowledge representation object was presented at at time.
Figure 2.2 shows an example of the old interface while editing a concept, as KREME Frames are called. Although
the individual windows on each screen were general-purpose tools, it was impossible to do any reshaping of them to
accomodate the varying amounts of information about any given representation object that was visible at one time.
It was also impossible to bring up windows showing different objects or different kinds of objects at the same time,

When we converted KREME to run under CLOS, the Common Lisp Object System, we also redesigned the
interface tools, decoupling them from the underlying representational systems, and redesigning the window tools to
be more like those on an Apple Macintosh or a SUN workstation. The result was a more modular, and more flexible
system for grouping movable, reshapable windows that allowed users individual preferences for editing become
predominant.

As has become prevalent in many window-based interfaces, The KREME screen interface now appears to you
as a Desktop covered by rectangular boxes called "windows" that can be moved around and stacked up like pieces
of paper. Each window is independently movable and shapeable. Unlike most other window-based systems,
KREME defines some sets of windows o act together, serving collectively to display and allow editing of a
particular concept or role object. Sets of windows acting as a unit are called clusters. There are default
arrangements for clusters for Concepts and Roles, and it is possible for the user to redefined the configuration of
these window clusters in a file that is loaded before an editing session. 'We have tried to select and arrange the
windows in each cluster definition so that you can edit a particular kind of knowledge representation object
cffectively and conveniently.

2.2.1 Component Windows

Figure 2.2.1 shows the as it might appear while cditing the concept CAR. There are a number of different
kinds of windows that can appear on the desktop. The oncs shown are much the same as those shown in the prior
figure. The difference is that these are only a few of the windows available, and they are all independently
movcable. We first discuss what each of these windows are, and what they are for. The numbers in circles on this
figure are referred to below, in describing that window.

The Mair commands window (1) contains commands that may be invoked at any time while running
KREME.

pon L) T .‘ L3I 4IHA 2NENGIED Gt

1/t0
.o P

I

dudbg uOIIIVINU] 193197

BBN Systems and Téchnologies Corporation

(1404 ¥) {14069 =} T Sta26 3 13701 IREATR N

(1404 v L140d ¥ T 549€ 3 13100 2 RI0.

ot 3L a3i) I NE0 ,l-\:.\- mv UGL3IIL 13298 Sninnyg *104
SUO013D1.13S3Y |ED0

GUOI b uyg JU St PPY

L EsLe) SNk S paut ja)

I v:c:‘: 1159 |1

a04nap 3404 OAF U0 AL DI
ONIHL :$az}eydadg

. S

A eSHI LY INGTS-TdNSE aio] 15| [P3t3ppouun Ipapgyceeid] S3A :angpuiad

3 eA-INT IV INGIS u&_w:.u_u“ T"u“ 4 R ‘]) _.30In30-130d4-2 :3d33u0)
351-30-1404-2 [0:3) :a. muip wburyy

ADIATA-LN0d-T, J0 SUO[IeZ|[#]IIdS PUV sUOpIVIITRY
g ALWAsAS RICIGS pY NG | \ \
I

Tty WAy peeel SINg Gasfuy pe cu

o Uty 39110g 110 1end
T ——e—_{5utT AlddnS gl
ooy <adng

Original KREME Editor when Editing a Concept

azTT

T e __

s [oeg)

.
.

= ISWHISNT) e ieme oo

JULIY GioY 1P xuolucz ..>r.u<
B821|BIIUI) S IIUIT A GO} MIN YVIUOT) MU HIOMIJL| PIAES PEO)

Figure 2-3

BBN Systems and Technologies Corporation

Figure 2-4: KREME’s new Desktop Interface when Editing a Concept

trane Broussr
S FRETATETRT B
t

g

- - e [
—_- M&l_____,{n,uuu AT e T v‘.ili‘.ll_l—.-,_—-n(':_'_ |i ; ’_- . [T ~

R = Finesn-g

e = T {e rensve-can o -fEED e

0
L}

COLTADT Foavgig
[OFTITITY Flaes

Ly Concept: CAR
Primitiva: N0 [Classified: Unmodifiacd)
Speciatices: MOTOR-VEHICLE WHEELED-0BJEC]
L Description: none

n User propet ties:

Lorar ators L A3

AANL " aF; ~~~_m [T
T E

‘Arec-can b =T

3 ; i - M

- : ~
|ll[Wv';AR| |-‘.fu1b§--‘.an] .

(it an e — Cnown] — ~~ ~{EEmad]

Local Lastoin? 1 dagcat Litymnt Claceas

1ae sl Fauwateness Fauivatsnces

Luatt abthactions Lwect spaleshzancns
Oetined Anctraetan: Definsd Sprrialzatinns
D.\ll Abstrar Yigny Al Spatiahzations

5 UAR

Relmnesdt by Hole Nutnt realtction Yalue_resteiction Dot ault Nescription
{:local FNGINF-OF Fxactly 1 (A AUTOMORN F-FNGINF) (A AUTOMOBN F-FNGINF) none

tlocal AESTHETIC-APPEAL Exactly 1 (A AESTHETIC-APPEAL) (A AESTHETIC-APPEAL) none

slocal MADC-IN Cxactly 1 {A COUNTRY) (A COUNTRY) none
Li:local CAH-RIVE Exactly 1 (A CAR-RIDL) {A CAR-HIDE) none

Hocal HANDL ING-ABH 1TY I xactiy 1 (A HANDLING-ABH 11Y) (A HANI ING=ABILITY) nonn
U:local WHEELS Exactly 4 (A WHEEL) {A WHEEL) none

Interacr on

Which Jesplay I8anit tiaw Capin, §

s
LGy

Aawn 7 nmm

dave NHetawrd Eyt Bo'e Hea Fule

A Hiaryrart Fait o ancept Haa Sancept Senarsticn Darimesers
Clayyifv AN

Reymt

Mouse-R: Menu.
To aeae other commands, prass Shift, Control, Meta-5hift, or Super.

Uret 72 000 Yillaivl LN OE) LL 2t ULtk Uzt fnp! R ohagrers atafineyg paer Lty

Lrene Rinuser
LAY AT AT Y
[r

. [i)

e iy PPN (rs Y |
quur.m“‘: - ——

- g ~[ugtps |

[CRIRETEAR]) wee .

.. T,

- T AR v THITT TN ~. "y
i Hote: MANE =N e
Pylmitive: YES [Classified; Unmodified}
Differentiates: PROPERTY

Y Domain: Doafined: OB CT Computed: OBLICCT

Descniplion: none Sint

soncept: CA

Primitive: | USer proper ties: St Prugint Diatuat
[Spescralizes SOURCE=TRE #PNEWKRTML:DETSIMUCH-NE T, ISP ey Famvalenee g
J i i)'n"n'i i o Crhans Latect upeciaiatine
' SO IpRion e Cafined Apacinbeatiant

LT
unl':u-.innil

[b T ~ £
IR - I
i Sl CALY
N s
R
=

0] Rango: Dofined: COUNIRY Gomputed: COUNTRY :.—;W" st U |
RNt FRAINLE A

I, User proper e ttazer fa TThar 1y 0 AR Spaciaksyt nay

/

Deuctaplion

/
e n) G ua K‘ o CNGINT)

T uone
;[' loacal ALy \ —"-"—'—"—"———iu-l PPEAL) none
':Ioc:ll M) m none
wlilocalt dhi Eennzt] none
P stocat] } -»'-i I 11y} none
i slocal \ Cavoc el none

Toore e >
') [Reshomtolimobodoi e] L - -
o
kY) N

Laals: frer

1
W oL pis) tes 05t teg Vage BadbING N welas vt Gy NGLE U
te nvean

10

BBN Systems and Technologies Corporation

The Editor Items window (2) shows the names of the things being edited states whether they are roles or
concepts, and gives some information about their current edit state (e.g., whether they have been classified
before, and modified since they were classified). This window is not normally visible, unless you click the
<Middle Mouse> button on the desktop background.

The Attributes window (3) always displays pertinent information about the top item on the editor stack,
which is called the current editor object. For concepts, the Attributes window contains the concept’s
name(s), a line specifying whether the concept is primitive and whether the concept has been classified
(defined) or not, and whether it has been modified in the editor since it was last classified. It also includes
lines giving the concept’s parents, and a textual description. Variants of this window appear whencver you
are editing a concept, a role, or a rule packet.

The Graph window (4) displays a dynamically updated graph of all of the abstractions and specializations
of the current editor object. This view provides a constant visual display of the relative position of the
object being edited in a hierarchy. Graph windows often appear when you are editing concepts or roles, or,
in general, objects that live in hierarchies. There are also graphs for restrictions on slots, and graphs that
show how a particular relation ties a group of concepts together, as in part-whole relationships.

The Table edit windows (5) display one of a number of tables describing a set of features that are part of
the definition of the current edit object. The one displayed in (5) is the Local slot edit window, which has
one line for each locally defined slot of the concept named. This is the normal table to see when editing a
concept, although there are a number of others. Columns in the slots table show the source (where it was
inherited from) of the slot, the name of the slot (which is also the name of the role or relation that the slot
represents), the slot’s value and number restrictions default value, and a textual description of the slot.

The Features Commands window (6) is a menu containing commands for displaying attributes of
concepts or roles. There is a Concept Features Commands Window and a Role Features Commands
Window. This menu is used to change what is displayed in a table window, or to display additional
windows for a concept or role,

The Editor Interaction Window (7) is a Lisp Listener with a KREME command interpreter running,
(Normal LISP expressions can also be typed into this window, by hitting the <SUSPEND> key first.
KREME commands (like the ones displayed in command menus) can be typed in to this window direcdy,
or they will appear when you click on a command from a menu. This window is also used when KREME
needs to ask the user for information. Like all of the other windows, this window can be scrolled backward
and forward through a history of the current session using the scroll bar at the left.

The Mouse Documentation Window (8) is always visible on Lisp machine screens, This is where you
look to see what the mouse will do if you click one of its buttons.

11

BBN Systems and Technologies Corporation

2.3 Window Operations

There are a set of operations that enable you to move and reshape any window on the screen. These
operations are accessed by clicking the mouse in the top margin (the solid area at the top) of the window you wish to
operate on. Cliéking the left button causes the border around the window to be highlighted. The window can then
be repositioned by moving the mouse (which moves the highlighted border) to where you would like the window to
be placed. Click the window again to put it there. (You can also do the same thing by clicking and holding the left
button down, dragging the window to where you want it and releasing the button,) The middle mouse button acts
similarly to reshape the window. Clicking that button on the margin area causes a carat (*) to appear. Move the
mouse to the side or corner you would like to move, then hold the left button down while you stretch or shrink that
side or commer. One very useful feature of the shape and move commands is that by pressing and holding the SHIFT
key while moving a window stops movement temporarily, and allows the window to be resnaped by stretching or
contracting the lower left comer. Lifting the SHIFT key continues moving it. Conversely, while the window is
being reshaped, the SHIFT key allows the window to be moved. Releasing the SHIFT key continues reshaping.

The right button on the mouse, when over the margin of a window, contains a menu of commands that include
the operations available on the left and middle buttons?, In this case, that menu also includes the following
operations:

¢ Bury the window - that is, place it beneath all windows that it is currently on top of.

+ Expand the window - reshape it to make it take up as much space as it can without overlapping other
exposed windows.

+ Expand Horizontally - reshape the window horizontally to take up as much space as it can without
overlapping other exposed windows to the left and right of it.

e Expand Vertically - reshape the window vertically to take up as much space as it can without
overlapping other exposed windows above and below it.

¢ Hardcopy - Send an image of the window to the printer.

o Iconify - Shrink the window to the size of the margin areca. Once this is done, the operations available
on this menu include only restoring it, killing, moving and burying the window.

« Kill the window - that is make it disappear completely. You will be prompted with a confirmation box
if you usc this option. To complete the Kill operation, click inside this second box.

* Move the window - This clicking and draging moves the window to a new place on the screen

* Move Constrained - Clicking this option again causes the carat to appear. Click the left button near
cither side to make the window move horizontally, or against the top or bottom to make it move
vertically.

¢ Search - Clicking on this option and then typing a sequence of letters does an incremental search for
that string within the window. The letters you type will be highlighted as they are found. This is a way
to scroll the window to display some symbol that is off screen, or simply to find something that is
visible,

This 15 generally true wherever the mouse 1s. There 1s always a menu activated by clicking the right button of the mouse, and it always
contains, among others, the operations found on the left and middle buttons.

. Y

BBN Systems and Technologies Corporation

 Set character style - This option is used to change the typeface used within the window, making it
larger or smaller. A menu of choices appears showing the typefaces and how they would appear.

 Shape - This is the same as the <Middle Mouse> button action,

o Shrink this window to expose others - At times a window is slightly too big, and it causes other
windows to be obscured, making those other windows inoperative. This option provides a means of
shrinking the window just enough to fix this problem, without you having to manually move and
reshape it.

¢ Menu of Display Operations - This command brings up a menu of operations on the window, as
described below.

2.3.1 Window Display Operations

Each window can, in principle, be used to display a number of different things, by changing the command
controling what is displayed in that window. The normal use of this feature of the system is to change a table
window from displaying one aspect of an object to another, as to change from displaying Local Slots to display All
Slots, including inherited ones. To make this possible, each window is associated with an object, called the focus of
the window, and a command that determines what kind of information displayed about the focus object.

When a command like Display Local Slots is issued for a concept, KREME must choose a window to display
those slots in. Normally, one window is designated as the default output window. This window is designated by
an asterisk (*) appearing after the title of the window in its top margin. If there is no default output window,
KREME assumes that you want to build a new window, and a rectangle will appear, that can be positioned by
moving the mouse. Clicking left will cause the window to appear at the current position of that rectangle, filling it
completely. This rectangle is the same as the one that appears when a Move window command is issued, and so you
may also reshape the window that will appear by pressing SHIFT, before you place the window in its final position,
This new window will become the default output window.

Windows can also connected to each other, if they are all displaying aspects of the same object. So, for
example, in figure 2.2.1, all of the windows in the upper part of the screen are displaying aspects of the concept for a
CAR. This group of windows is called a window cluster, because they are all tied to each other. Any command
that changes the focus of one of these windows changes the focus object for all of them.

For example, if another Edit Concept command is issued for the concept ENGINE, the default will be to use
as a display window the Concept Attributes window currently displaying the attributes of the concept CAR. This
command will change the focus object of that window to be ENGINE, and simultaneously change the focus of all of
the other windows in the cluster (that is, all windows tied to it, directly or indirectly) to also be ENGINE. The efiect
of this is to have all of the displays in the top half of the screen all show things about ENGINE. The graph window,
which was associated with the command Graph Concept, will now display a graph of the abstractions and
specializations of the concept ENGINE. The Local Slots window will display the local slots of ENGINE, etc.

This behavior of the Edit Concept and Edit Role commands can be changed by using the :Display keyword

13

BBN Systems and Technologies Corporation

command option on the command line in the interaction window. When there are no Edit Concept clusters of
windows displayed, the default for the :Display keyword command option is New Display, e.g., to create a new
one. Otherwise the default is to reuse one that is already there, as described in the last paragraph. If you do not wish
the Edit Concept command to reuse the existing display windows, you can cause a new cluster of windows to be
created by providing the :Display keyword command option with value New Display. Or, if you wish to have the
" effect of a command reuse windows that it would not normally use, you may issue the :Display option and point at
one of the windows in the cluster you wish to use.

14

o

BBN Systems and Technologies Corporation

3. Extended Classification in KREME

One of the first tasks we addressed in Phase Two involved the extension of KREME’s classifier to deal with
more complex restrictions on slots. Our goal was to give knowledge engineers the enriched expressive power they
needed to specify more precisely the constraints on slots in a concept’s definition. We based our enhanced slot
definition language on those found in commercial frame language systems like Intellicorp’s KEE {Intellicorp 84].
Our goal was to demonstraic that such techniques could be used with frame language systems like KEE. However,
we wanted to do this without giving up the important roie played by the KREME classifier. The difficult part of this
task was extending the classifier, so that its role in knowledge base maintenance was preserved. This meant enabling
it to reason over restrictions composed of boolean combinations of concepts, as opposed to simple constraints that
referred to single concepts. This chapter briefly reviews that work,

The success of the effort to extend the classifier depended in large part on the unique design of the KREME
classifier, a design that was also crucial to the success of KREME in doing re-classification and generalization.
KREME'’s classifier, unlike the classifier of its predecessor, NIKL [Moser 83], enables users to modify and re-
classify concepts during an editing session.3 This means that there is no need to edit textual definitions of the
concepts or frames used in an application and then reload the whole knowledge-base in order for classification to
occur correctly. The KREME classifier acts somewhat like a truth maintenance system, in that it takes revised
definitions of concepts and propagates the effects of redefinition to all related definitions in the knowledge-base. For
a full description of the KREME classifier, readers should refer to [Abrett and Burstein 87].

The modular design of the KREME classifier, and the introduction during Phase One of an independent
hierarchy for slot restrictions made the job of extending the slot restriction language and classifier much easier. In
order to allow redefinition to occur in a reasonable period of time, and in anticipation of the extension of KREME to
a language with more complex slot restrictions, the classifier was redesigned mid-way through phase one of the
project to include the explicit caching of the subsumption relations between the slots of different concepts, as well as
the relations between the concepts themselves. In effect, KREME builds a classification hierarchy of slot
restrictions that exists separately from the concept and role hierarchies Figure 3-1 shows how these hierarchies are
related. Each slot on a concept is classificd scparately as to how its value and number restriction relates to others
that have been used elsewhere in the concept network. Slots are also related by virtue of their slot name, which is
the name of the role or relationship that they denote. Since roles also live in a subsumption hierarchy, as with the
relation HAS-PROPERTY and its child COLOR-OF, then the slots that refer to those relations are also related.

In the KREME classifier, each component language definition object was made responsible for answering
subsumption questions in order to relate two objects of that type. This meant that we could extend the slot
restriction language and make classification work for that extended language simply by adding special rules for
testing the subsumption relations between two complex slot restrictions, in order to determine their relative positions

3The classifier in LOOM [MacGregor 88}, another systein based on NIKL, and developed at ISI, now also does reclassification.

15

BBN Systems and Technologies Corporation

CONCEPT / ROLE
Hierarchy RESTRICTION Hierarchy
Hlerarchy
THING RELATION

ACT PROPERTY OBJECT

f \l— has-property (A PROPERTY) ? t
COLOR

f _,-color-of Wheel-of
CAR
/ \ r\.____ color-of (A COLOR)

RED BLUE pEp-CAR
[color-of (A RED)

/r \ R f\
T has-property part-of

color-of (AND RED BLUE)

Figure 3-1: Subsumption Hicrarchies in KREME Frame Language

within the subsumption hierarchy. The bulk of the classifier algorithm, for dealing with the global placement of new
objects in a hierarchy, remained unchanged, as did the classification of concepts that used these extended
restrictions.

Internally, complex restrictions were stored in a cannonical form, so that they could be efficiently compared.
Thus, when a new value restriction was entered, it was converted to conjunctive normal form (CNF), with some
rewriting to reduce the complexity of the expression, where possible. Finally, we specified a set of rules for
comparing two boolcan descriptions in CNF, and answering the key question, whether one subsumed the other or
not. This can be a very cxpensive procedure in general, since the problem is NP-complete. However, for
cxpressions involving less then 10 or so concepts, we found speed was not an issue, and we added some heuristic
rules to this procedure that would look for shortcuts to answering this question, where a standard algorithm would
have been unneccssarily slow.

Unfortunately, it is theoretically impossible to make the resulting algorithm logically complete. It cannot
always resolve correctly that one concept subsumes another. It is, however, never going to incorrectly state that a
subsumption relation exists when that is wrong, or it goes in the other direction. It simply gives up on particularly
difficult cases and states that the two restrictions arc incomparable. This means that the classifier will essentially
create siblings for such cases. This also means that the classificr for concepts may potentially miss a subsumption
relation that it could have inferred, in theory. However, for the vast majority of cases, the system functions well,
and provides the knowledge base builder with more than he entered explicitly.

16

BBN Systems and Technologies Corporation

Below is an example of what the classifier does with these extended restrictions. We defined the concepts
CAR, RED-CAR, BLUE-CAR, RED-AND-BLUE-CAR, and RED-OR-BLUE-CAR. Each of the colored cars was
defined as a non-primitive specialization of CAR, with a different value restriction on the COLOR-OF slot. Since
they were all non-primitive, the classifier is free to assume that the concepts are completely specified by their
definitions, and it tries to relate them based on their defined properties. As their names indicate, the RED-CAR had
a value restriction (VR) of RED on the slot COLOR-OF, the BLUE-CAR had VR BLUE on that slot, the RED-
AND-BLUE-CAR had VR (AND RED BLUE), and the RED-OR-BLUE-CAR had VR (OR RED BLUE) on the
same COLOR-OF slot.

In general, there could have been many concepts that used these same restrictions on COLOR-OF. However,
the relationships between these restrictions are computed only once. The classifier takes these restrictions and
relates them to each other. Each restriction is placed in the restriction lattice so that it is beneath restrictions that
subsume it, and all equivalent restrictions are classified the same. That is, concepts with slots using equivalent
restrictions have those restrictions unified in the restriction lattice. Even though there could have been many
concepts that used these same restrictions on COLOR-OF, the relationships between different restrictions are thus
computed only once, and each is then placed in the restriction hierarchy under the more general restriction COLOR-
OF:(A COLOR), which was defined for CAR. Figure 3-2 shows a KREME graph of this portion of the restriction
hierarchy.

|
Slot COLDNR=CF
L A0y aumeer THIG

Stat DALNR=CF, Mancent ARIEAT
Avleazt 1 DOLoR

Slot COLOR-QF. Concepr FEC-OR-BLUE-C AR
A lemst 1 ORATC G F,

..

See..,
. - St .

e S

S lohegE ancapr REC-OBIELT 510t 'L DA% F, oncent BLUE- - 4R
L At lzart 1 FED { At laasr 1 ELJE
. oo

-~

e v

.\\ .-/
} Slot COLOR-DF, Zoncapt REC-AND-BLUE-CAR
L At l2ast 1 (AND RED BLUE)

Figure 3-2: A KREME Restriction Hierarchy Graph with Boolean Restrictions

As you can sce from this graph, the restriction (OR BLUE RED) is mcre general than the restrictions RED

17

BBN Systems and Technologies Corporation

and BLUE separately, since the class of things that is either RED or BLUE includes all red things and all blue
things. The restriction (AND RED BLUE), since it is only true of things with both colors, is more specific than both
the class of things with color RED, and the class of things with color BLUE.

Once the KREME classifier had established these slot restriction relationships, it tumned to the classification of
the concepts that used those slots. All of the colored cars were defined as non-primitive concepts differing only by
the restriction on the COLOR-OF slot. They were also defined as specializations of the concept CAR. In a system
without a classifier, they would all be placed as direct descendents of CAR. However, the classifier, knowing how
they all differed only in one slot restriction, could detect that some were specializations of the otly s, and establishes
a hierarchy for those concepts that parallels the hierarchy of their restrictions on COLOR-OF. This is shown in
figure 3-3 below.

qe[.-.;ﬁ: i |BLUE-L 21

EEC =3FI RTE REC-aTI0-2 e~ -3)

Figure 3-3: Resulting KREME CONCEPT Hicrarchy Graph

18

.

BBN Systems and Technologies Corporation

4. KREME and SFL in CLOS

In preparation for use of KREME on other platforms, notably SUN workstations, we undertook the conversion
of KREME from its original implementation in terms of Symbolics FLAVORS objects to the PCL object system,
the preliminary implementation of CLOS developed at Xerox PARC. CLOS stands for the Common Lisp Object
System [Bobrow et al. 88]. The conversion of the internal frame language definition objects and classifier was a
relatively straightforward translation of one object system to another. The new system, with some optimization,
appears to work about as fast on a SUN 4 as the original FLAVORS system did on a Symbolics Workstation. This
makes it well suited to use in that environment. A preliminary conversion of the revised interface and editing
environment has also been completed. The SUN interface is built using CLIM, the Common Lisp Interface Manager
developed by International Lisp Associates in conjunction with a number of LISP vendors and developers.

For another project at BBN, Glenn Abrett, the principle implementer of the original version of KREME, and
others, developed a "stripped down" version of the original KREME language and editor that focused on rapid
editing and instantiation in a production environment, without the overhead of full classification. This system is
called SFL for Simplified Frame Language. SFL, together with a revised version of the KREME procedures
language and editor called TARL, the Tactical Action Representation Language, are the knowledge acquisition and
representation tools for a complex multi-agent simulation facility that is used in the Semi-Automated Forces system
for SIMNET, a battleficld simulation and training environment. These representation tools are discussed in the next
chapter, to show one of the uses that the KREME technology has been put to,

Our work converting KREME and SFL to run under CLOS raised an interesting possibility. Because CLOS
has an accessible meta-object protocol, it was considered possible to write a version of the KREME language that
was written directly as a set of meta-classes in the CLOS environment, providing a truly integrated object system
with SFL/KREME Frame semantics for slots. This experiment was undertaken by Tom Reinhardt, and is reported
in full in [Reinhardt and Burstein 89), a paper presented at the 1989 OOPSLA conference on object-oriented
programming. This scction gives a brief overview of points made in that paper. For further discussion sce also the
Phase Two Technical Report [Burstein et al. 89a).

4.1 A Meta-class based Frame system

Many efforts at BBN have considered the use of CLOS when building a knowledge base for a production-
oriented knowledge based system. This investigation looked at one way to ease their entry into that environment.
We endeavored to introduce the frame language SFL directly into the CLOS environment using the meta-object
protocol. Unlike Kreme, SFL does not attempt to maintain a completely classified hierarchy of concepts and
relations. Instcad SFL accepts the (parent-child or subsumption) hicrarchy as defined by the user, and ensures that
the properties, i.c., the slots, are inherited correctly using the completion algorithm from KREME. Whereas

BBN Systems and Technologies Corporation

completion was a subtask of the original Kreme language classifier, it is the primary task of SFL. We were able to
develop a version of this algorithm to replace the effective slot computation mechanism of the standard CLOS
meta-class, thereby producing a true CONCEPT meta-class.

4.1.1 Integrating Objects and Frames

From numerous projects currently underway at BBN we have seen a requirement for a knowledge
representation and/or acquisition systems that are similar in (1) their use of large amounts of data requiring a fast,
easily verifiable knowledge representation language, and (2) their need for fast instantiation of objects from their
underlying descriptions. Just as importantly, though, they differ in the size and complexity of their underlying
knowledge bases, and in their need to incrementally evolve. This, in turn, implies their need to operate over
incomplete, possibly inconsistent data.

Of these items, the last, the need or desire to incrementally define and edit these large knowledge bases in the
absence of total knowledge, is critical in evaluating the desirability and feasiblity of the integrating frames into
CLOS.

The Meta Object protocol, as described in Chapter 3 of the Common Lisp Object System Specification
{[Bobrow et al. 88), provides a general mechanism for extending the CLOS interpreter. A new langnage, SFML
(the Simple Frames Meta Language), has been implemented within this mechanism. We have shown that by
defining specific protocols at this level, the desired behavior, i.e., the salient properties of SFL, can be bootstrapped
in a general and attractive manner. Moreover, SFML provides functionality above and beyond that provided by the
original SFL, specifically,

1. It permits incremental definition of knowledge bases;

2. Designers may quickly and predictably particularize its behavior through the redefinition of generic
methods;

3. It provides a builtin instantiation mechanism that has and will continue to be refined over time.

4, It is envisioned that upon acceptance of the Meta Object Protocol by the Common Lisp Language
Committee, X3J13, SFML will be completely portable and therefore available to a variety of
traditional as well as emerging architectures.

These properties are, by in large, a direct result of having implemented SFML within the CLOS metaobject
protocol.

4Tt should be noted that although the Common Lisp Object System Specification has been accepted by the Common Lisp Language committee,
X3J13, Chapter 3, outlining the Meta Object protocol, has not as of this writing.

20

BBN Systems and Technologies Corporation

4.2 Design and Implementation

In order to follow in detail the design and implementation process, a detailed understanding of the meta-object
protocol is necessary. Interested readers should refer to [Reinhardt and Burstein 89] and [Bobrow et al. 88] for
details, Here, we just give the basic ideas behind the process.

The CLOS Meta-object protocol is a set of modifiable behaviors associated with the definitions of all objects.
Normally, the classes of objects defined for an application are derived from STANDARD-CLASS, in much the
same way FLAVORS provides a builtin definition mechanism for building classes of flavor objects. The difference
is that one can build modified versions of STANDARD-CLASS quite naturally, where the definitions of FLAVORS
cannot be similarly modified. Thus, the object classes for CONCEPT, ROLE, SLOT and RESTRICTION in the
original KREME system were defined as flavors (See Figure 2-2.), and in the straightforward conversion to CLOS,
they became classes, based on the meta-object STANDARD-CLASS.

An intermediate step between SFL-CLOS and SFML was the introduction of instantiation of concepts in
SFL-CLOS by specializing STANDARD-CLASS to a new meta-object that simply combined (mixed together)
STANDARD-CLASS and CONCEPT, to form STANDARD-CONCEPT, and declared that all slots stored in
instances of STANDARD-CONCEPT should become instantiated by the mechanisms of the original STANDARD-
CLASS. This effectively made all concepts be classes in the CLOS sense, for the purpose of instantiation. The
approach, while successful, required a lot of unnecessary overhead. Essentially, two object/frame mechanisms were
invoked for each concept defined. It was clearly a very inefficient approach to instantiation.

In SFML, a different approach was taken. Modified versions of STANDARD-CLASS were developed that
combined the repeated functionality much more carefully. The definitions of slots in the KREME/SFL sense were
carefully integrated into the CLOS slot mechanisms, by specializing the CLOS STANDARD-SLOT meta-class. In
fact, several varietys of slots were developed, one which included only the additionalinformation about number
restrictions, value restrictions and defaults found in the KREME/SFL language, another which also had capabilities
of demons.

The CONCEPT mcta-class was then defined to usc these new kinds of slots. This meant replacing the
methods on the meta-object STANDARD-CLASS that computed the effective slots for a ciass with new versions
that used the KREME/SFL completion algorithm to do the same job. This was only possible because of the design
of the meta-object protocol. What was required was the carefully replacment of one slot-computation mechanism
for another by defining a specialized version of the mcthod COMPUTE-EFFECTIVE-SLOTD for the new,
specialized version of STANDARD-CLASS. There are a number of other details involved in this kind of an
experiment with the meta-object protocol, but they go beyond the scope of this report.

21

BBN Systems and Technologies Corporation

4.3 Results of the Experiment

This is clearly only an experiment in the unification of frames and objects. However, we feel it is an
important one, since CLOS is rapidly becoming the standard for object systems in Common Lisp. Unfortunately, as
of this writing, the meta-object standard has not been accepted as a standard, so we cannot yet rely on the portability
of that mechanism to all platforms and Common Lisp systems.

While we were successful in getting the merger to take place, there are a number of efficiency issues that
remain. The original FLAVORs version of SFL took great pains not to develop all of the structure necessary to
instantiate each and every concept, so as to avoid the overhead that that introduced. In a typical system, only the
most specific concepts are ever instantiated. The more general ones are there only to support the consistency and
inferential capabilities required of a knowledge base. On the uther hand, the merger of the SFL and CLOS produced
a system in all concepts/classes are instantiable objects, with a reintroduction of all of the overhead that that implies.
Were we to make this into a true production system, this issue would have to be addressed more carefully,

On the other hand, the whole CLOS system continues to become more efficient, ~o that in the future, this
overhead may not be a burden. We forsee a day when a system like SFML will become the stendard for production
object/frame systems.

22

PR & W

PO S

o .0

BBN Systems and Technologies Corporation

5. Applications of KREME Technology

During the period of time that Phase Two of the Knowledge Acquisition project was active, KREME editor
tools and derivatives of KREME have been used for a number of applications at BBN and elsewhere. This chapter
Jooks at some of those uses. The first section gives a chronology of the projects that have used KREME tools. The
second section looks at SFL and TARL, spinoffs of the KREME frame and procedures editors respectively that were
an important component of the Semi-Automated Forces project within the DARPA-funded SIMNET battleficld
simulation and training system. We conclude the chapter with a description of a project investigating the use of
KREME in an ongoing knowledge acquisition and refinement activity, the development of indices for an on-line
document library.

5.1 KREME Applications and Spinoffs

We begin with a bit of a chronology. There have been a number of applications that, directly or indirectly,
have used KREME environment tools and representation techniques over the last three years, We list the major
ones here, in order of time of their development.

e January - April 1987 -- A version of the original KREME editing environment was grafted onto NIKL
for use in the JANUS natural language system, based on an earlier grafting of the environment onto

KEE. Thic cffort was only partially successful because of the inability of NIKL to reclassify
definitions.

¢ August 1987 - December 1988 -- SFL, the Simplified Frame Language, and TARL, the Tactical Action
Representation Language, and editors for both languages were developed, based directly on the
KREME frame and procedures languages. These tools bec:.me part of the event-driven, object-oriented
simulation system called SPROKET.

o June - Scptember 1988 -- The new version of KREME in CLOS with the new interface design was
implemented.

o July 1988 -- A browscr and class editor for CLOS was devcloped directly from the new KREME
interface.

o August 1988 -- A CLOS browser bascd on the new KREME and a revised KREME rule editor are used
in an expert system for the IRS.

o Scptember 1988 -- Work begins on the use of KREME in an document indexing and retrieval system to
be called INDEXER.

o October 1988 -- The new KREME frame system and editing environment was adopted for use as part of
a new Knowledge Acquisition facility for the JANUS natural language system.

¢ December 1988 -- A version of SFL in CLOS was developed, with the new KREME interface.

23

BBN Systems and Technologies Corporation

5.2 SFL and TARL

SFL and TARL are representation language editing environments directly based on KREME.® SFL, as has
been described earlier, is essentially a version of the original KREME Frame Editor without the classifier with the
addition of a Flavors-based instantiation mechanism that allows system developers to specify which concepts need
to get instantiated, and which concepts should be defined with "external” flavors mixed into them. This second
feature provides an extremely flexible mechanism for mixing prograramed behaviors into concepts, so that they can
be used as active objects in a knowledge based system. TARL is a languaage for representing both goals and
procedues. It uses SFL to represent the classes that different goals and procedures fall into, and their attributes.
Both TARL and SFL are a part of the SPROKET simulation environment.

The SPROKET simulation environment is based more on Al planning languages than other simulation
languages in that the goals, plans to achieve goals, and actions undertaken as parts of plans are all represented at the
knowledge level [Newell 81]. That is, they are described in a frame-bascd declarative language that can be reasoned
over. The simulator is optimized to interpret these declarative, object-oriented descriptions of goals and plans.

The knowledge representation languages used by SPROKET are accessed through a powerful set of
knowledge acquisition tools for browsing and editing declarative representations based on KREME. These editing
tools are essential in designing complex plans and behaviors for simulated agents with a high degree of flexibility
and accuracy.

SPROKET’s procedure representation tanguage makes the construction of procedures that can be simulated in
parallel quite easy. Each of the agents is simulated as acting in parallel, and can pursue multiple independent goals
in paralicl. Agents can even perform several actions *‘simultancously’” if those actions are not mutually exclusive.

Figure 5-1 is intended to give a sense of how all of the pieces of the SPROKET cnvironment fit together.
There is an underlying representation language for frames, and other languages for constructing goals, their subgoal
decompositions or plans, and procedures or scripts that can be used to achieve goals by performing contingency-
bounded sequences of actions. These languages are closcly tied to a set of editing environments that were built
using tools developed for the KREME knowledge acquisition environment. Finally, there is the cvent driven
simulator that takes the user-developed representations of agents, their goals, procedures and actions, and causes the
agents to "walk through” simulated situations and try to achieve their goals,

SSFL and TARL were developed in part under DARPA's SIMNET Project under (Contract number MDA972-89-C-0060) and in pant for
DARPA’s ALBM program. For further details, see [Abrett, Burstein and Deutsch 89).

24

Saadie

BBN Systems and Technologies Corporation

Knowledge
Acquisition Tools

Knowledg | Goal_/Plan
Representation Editor
Languages l

Procedures
Goals/ Procedure
Plans Editor
User [
Frames Knowledge
Pl Bases ‘ Frame
\ Editor
_/ —
Goal-Directed
Discrete Event
Simulator

Figure 5-1: SPROKET system overview

5.2.1 SFL

SFL does not use the KREME classificr, but it does use most of the rest of KREME, including one portion of
the classifier, the slot compliction algorithm that determines a concepts set of effective slots given its set of defined
slots and defined parents. The primary function of completion in SFL is to determine the simplest logical
expression for ecach slot’s value and number restrictions, based on the slot’s local definition and the restrictions that
the concept inherits for that slot from its parents. Logically, these restrictions are the conjunction of their locally
defined values and the restrictions inherited from slots implementing the same relation on parent concepts.

In principle and in fact for the first version of SFL, the relationship between SFL concepts and Flavors was
established by shadowing the concept taxonomy with a duplicate flavor hierarchy. For every concept there was a
corresponding flavor, whose mixins (component objects) corresponded to the concept’s direct parents, and whose
instance variables were cach associated with one of the corresponding concept’s slots (the slot names were identical,
as were the default values)® Whenever a concept was defined a shadow flavor was defined along with it. An
instance of a concept was in fact an instance of the corresponding flavor.

$There was one addditional slot on the flavor, containing a pointer back to the concept that it was a type of.

25

BBN Systems and Technologies Corporation

In the current version of SEL, this scheme has been modified for efficiency reasons to make the shadow flavor
hierarchy much sparser than the concept hierarchy. Only those concepts that are actually going to be instantiated or
have specific behaviors defined for them are actually shadowed by flavors. This eliminated a large amount of
needless flavor definition and redefinition as a concept latice was under development, a tremendous savings in both
time and space. Figure 5-2 illustrates this scheme.

This relationship between instantiable concepts and corresponding flavors gives SFL an efficient means of
associating behaviors (methods) with its concepts’ instances. However, in order to more clearly distinguish the
behavior of objects in the simulation from their representations as concepts, concepts and flavors were by allowing
concepts to be directly associated with "external” flavors, flavors not part of a concept’s "knowledge level”
definition, but mixed into the flavor used to instantiate the concept, providing it with additional runtime state
information and behaviors.

The SFL Editor Interface is directly based on the original KREME interface. It is shown in figure 5-3.

5.2.2 TARL

The TARL 1anghage is used for representing the goals, plans and procedures that drive the simulated agents.
These representations are at heart of the SPROKET environment, and the tools used to develop representations in
these languages are a large part of what makes SPROKET so powerful. Figure 54 is an example of the editor
interface to this set of representation tools, showing its strong connection to KREME. .

TARL most closely resembles PRS, Georgeff and Lansky’s procedural reasoning system [Georgeff and
Lansky 86]. The portion of TARL that is used for representing plans to achieve goals as an AND/OR graph of
subgoals is based directly on PRS. The major difference is that TARL provides a second layer for representing
conditionalized sequences of low level actions that is not part of PRS.

Figure 5-5 shows how the different "layers” of TARL are related to each other, and to the actions that the
simulator schedules and performs. At the top are the goals that the agent has and is trying to achieve. Goals
represent things that need to be accomplished. As in PRS, a goal is characterized by a set of achievement conditions
that describe the state of the world under which the goal can be said to have been achieved. Each goal is also
associated with an achievement plan (hercafter, simply called a plan) that describes the alternative sets of subgoals
and procedures that can lead to satisfying the goal’s achievement conditions. Achievement plans (the second layer
in from the edge in figure 5-5 are specified as an AND/OR tree of subgoals, where subgoals may simply invoke
procedures. The default assumption in plans is that both conjunctive and disjunctive subgoals may be attempted "in
parallcl”, although that assumption can be overridden by explicit "serialization” links in the plan graph.

Eventually, one must actually do something to achicve onc’s goals. Thus, plans gencrally bottom out in
procedures that are like scripts [Schank and Abelson 77). Procedures are the lowest knowledge level (declarative)
description of how somcthing in the simulated world is to be done. Procedures describe sequences of atomic

Figure 5-2: Relationship between Concepts and Flavors in SFL

SYSTEM
FLAVOR
VOR
"DBJECT" | (MY-CONCEPT)

I

I

LOCALIVS: |
[

I

4'/_,,,,' I

LOCAL
IVS: (A, X)

LOCAL
IVS: waoOoW
Shhz
(8,Y) -

All VS:
(A, B, X, Y,
MY-CONCEPT)

DEFINES
SLOTA
CONCEPT
C,
DEFINES SLOT X
ALL SLOTS: (X, Y)
A
s
sHaDow | \ 3
FLAVOR A
y| c
/ 1
& N
3
99 /
N
§
) /
A
INSTANCE
OF
FLAVOR Cas3
FC, LAVOR _
A: l‘xnl' /
X: 100 /
MY-CONCEPT C 2
/8
7.9
-\'o

INSTANCE
OF
FLAVOR

FCa3

A: "PQR"
B: 200
x-

MY-CONCEPT: C 5 3

BBN Systems and Technologies Corporation

DEFINES
sLoTB

DEFINES SLOT Y
ALL SLOTS:
(A.B,X,Y)

BBN Systems and Technologies Corporation

The SFL Editor Interface

Figure 5-3

Ko

7 AT 150

B8 G) gue) JENIRNICT a0 1D 90
(1udumndoq:y t9and0x3:1) “1doduod syl e 5101S LALIIDYJD JO 105 D1DduIod Dy Aedsiq
S F e 4N e j
Yot
e |)

2300

sy (nuigy ukly %) avgann fue HOUYINLNS L3 0103-3u1% iy

Suou (I3uuN »» I “ts3€ 3 MY ALT L3 d01eaK] 3

1} {43900 ¥ T %ts3€ 3 S1NN=-NHOM T1EENTS Auiymsia

atnn (20w LS-N3NING3 Ny b 1 Apane-3 SN1IVIS=-11Iuungy 1MIN3ING3

suou 433NN 3D F o33 40-438MNN-1vIN3S LRI R]

S suvy (ININGINGI~IL1Sudiuy v} Avyan sug 40-14vd 1NIngtnug

-.O—&Q....QUOD ILNe I DL I IIED L anjey HOL 2L 23291 1Umny L IR} a«. [WED]
{7y 07207 I 2oy N

UL U LaDRY|

1SININ-JSTT S1dIINOI-14S-INT L ININC 24548 SHTUNOO HHU-HSUN Satty 2oanog

SHO4IM Y TJuUop J43AdU YONYTIAII0 ING PIILNbIY aone] 4 1chRqRqC Jonecy 4

e uﬂ-nm!.w‘ .-U.-JQ

ALTINI-duIy iz .

LHINNSLSRI- Lo g IN3UJIND3 :sdz1etoadg

IRETRITLE I S A2 Ly TISio 2 1dasuoy

331430-4v1d510 [11] L LY S pityg maw ___ Adag _____3Zii0aviy
J01AIM-AB ST JO sud§1e?§|€129d5 pue Suot13ovIISyY

SIHOTY SHINUM 31y jar

T T AHTRESH 17K |-

HIINIOS 03345 RIMINUN |

o " IHOLY NI —l

poistont-urn g,

N

HU IO - 34055394 e

HU MG U3 |-wan

6J939WBIEY
HIOMIBN 1980Y

Y Joquiewvy
J403ip3J 1950y

o) NHe]e—

9|04 P33
D)0y MIN

§ £ 1KOE -SRINsyR-93 s P2 .e/.V(ulllll.EE\ o e h
. - LA
. Ema e~ ETT T ol
) T Y S T \m\m..
X 3006 FISETI o Lo siom S aay ot 31 unmauii \N«.\

Indi-¢wisld

{ aaesapn |

umoucoo Map

{ AH N30 1wty [

28

BBN Systems and Technologies Corporation

tor

The TARL Procedure Edi

.
.

54

igure

F

‘8UO(ILIOUO BNOIJIBA JO NUDY| Y ‘OPOU SIY) BAOK W 'OPOU B|UYY ydean : g2

TEMID A 2

v

Indu] 1d%n 244 12

1 134849 G242 "TH Ml Mg

‘opou 8yl YPJ

Wle § et 3] evieg

_ Y

(N7 RONIdE 10 JTO8 WOl S1012 Y EMQTIET)

suou (NDZIVIOY ¥) T A13003 JyIUM ATIALIOY N1 139 NOTHE
auoy (NOS¥3d_¥) 1 4123 OHM _ NOI1JY-33N03I0Y4-NO343d
DITWT Y 12591) LNV JI) UOLIILIISIL INJVA UOLIDL JYavw2 Seymny JLUN Au peunt 1a1)

YIS NP3

3IN0IINYJ- ITAOH-V-0L-09 *d §
U1-JATHY M d«

‘\\ ~

[ppRang Uy
XARD-AUL=PULIX |-
umudg

{w) aneaj]. {.] Niedle

su49j)jgweey

J4011p3 198

jo0dg L_x..cm
ndwo)

HY Joquoway

4]

-

J49quieuiay

“deney

uo1es0
auw) Inoqy

(e ui 335 |- r\\m\ﬂ.r:oéhwu/\IVs [riem warsdg)- _ "hb..m_u_uné

-[o] ae3 axnej J--I- —- -

240yl ¢-—

K101 10y 4Py Antag

sungydyansag

TIN tUan31as 03 nsay

TN 9weu VOLIDUNG FUNLLIIFUL PIIDIURSLY)

01-3ATYQ :9dA3 24npadousy 01-~3AI4Q :aweu aunpadsoay
srebe by “pon 1ix] KRR LP I ..:._g.-.‘JOr,_,&
umpedg apop| ey GPON 1IPM HALWL G Y
N 01~3A180 30) uoisupdyj asnpaio sy

. TR _
-_I gy T
S dpedayy > T M98

/ LT

-~

Jasayp (oY1 4®d3-4Yy) ¢-- 322l’'qp agji1qoy :sBugddey ajqey.aepn
Yo130)y 252)0U07 UD 4 UOLII|CUOY UOLIITI07 Auanp udy Ijepdp

iadd] w013y (0209) 0y 4PY AP TAPOY BNLARANG VIR NN Y

DINPIDOIS P
DANPII0OUY MIp|

B0y 1p 4 gk .
10085 MmOy

BBN Systems and Technologies Corporation

Figure 5-5: Goals and Procedures in TARL

Subgoat:
Get Job

Subgoak:
Win Lottery

Have $ JAND

Proc:
Invest

Activities

Agents ——% Objects

Event-Driven
Simulator

30

BBN Systems and Technologies Corporation

actions to be taken, tied together by temporal sequencing links into things that look like flow-charts. Actions are
encapsulated LISP functions, that are performed by the simulator, and which modify the simulated environment.

5.3 A KREME Knowledge Base for Document Retrieval

BBN has been working for approximately a year developing a document indexing and retrieval system for
agencies within the Department of Defense that are responsible for Technology Assessment. The overall goal of
this project is to develop and provide prototypes of distributed information management tools to those agencies
within DoD responsible for technology cooperation and exchange. These agencies have expressed a need in recent
years to move from a primarily reactive mode into a more active mode in identifying technologies to be pursued, in
establishing agendas for meetings, and in developing the memoranda of understanding which form the instruments
of exchange. Additional tools will be added to the workstation environment we have already developed to support
this active mode. One of these is a more knowledge intensive approach to document indexing, taking advantage of
KREME technology.

In a short time the document databases and information resources of technology exchange operations within
DoD will be vast. State-of-the-art automated document handling techniques, whose storage and retrieval algorithms
are ignorant of the content of the documents, will be inadequate. Such techniques may include extremely clever
exploitation of key phrases, statistical properties, indexing schemes, etc.; but they tend to confuse documents which
use similar words in diffcrent in senses (or use different words, but are similar in content). The result is that they
retrieve t00 many documents (or miss relevant documents), The technology exchange context requires a system
which intelligently exploits knowledge of subject matter, people, projects, countries, agreements, etc; recognizes
such concepts in texts; and assists human document handling by exploiting such knowledge.

5.3.1 DEARS

The DEARS (Document Entry And Retricval System) was first developed to support the basic task of
building a large-scale, on-line, document-library retricval system for technology cooperation operations,

The development of the current DEARS system has involved the application of three key technologies: the
document manipulation techniques cmbodied in the BBN Slate™ system, the knowledge acquisition techniques
developed during the construction of the KREME system, and the distributed computing environment of the BBN
Cronus system. This development also includes a well-developed infrastructure of fundamental information
management components, intra-DEARS interfaces, and user interface components. Each of these components is
briefly described below:

Document Identification and Location System. This system supports storage of the various data required to
identify and characterize documents, Such identification information includes such information as author, document

31

BBN Systems and Technologies Corporation

type (e.g., briefing, article, correspondence, agenda, proceedings), DoD document serial number, physical location,
date, relevant organization, etc. '

Library Catalog System. This system supports cataloging of documents in a basic library card catalog
fashion. The fundamental subject/title/author catalogs are supported, with extensions to allow users to easily create
new catalogs according to domain or retricval requirements {e.g., briefing catalogs, weapons catalogs, etc).

Relational Database System. This system is a general-purpose, commercial RDBMS with a Cronus-based
distributed interface. It accommodates both C language and LISP language-based components, and is used as a
general storage and retrieval resource for other system components.

Document Formatting System. This system preserves the original formatting of documents entering the
system. It is a LISP component that analyzes the presentation format of a document. This analysis is recorded with
the text of the document in the form of BBN Slate™ document format control statements. When a document is
displayed in by BBN Slate™, it appears in its original layout.

Keyword System. This system provides storage and retrieval mechanisms for document/keywords tuples,
Upon entry to the system, documents are scanned and the presence of keywords in the text is recorded. This
component provides an additional tool for general document retrieval,

Graphical Interface Toolkit. This toolkit consists of a set of very high level routines ior developing
graphical user interfaces.

The completed DEARS system will combine three approaches to indexing and retrieval, each of which
represents a phase in the development of the system:

1. standard techniques for users to manually index documents in "card catalogues", as represented by
DEARS,

2. fully automatic techniques for indexing documents by word usage indices, also in the current DEARS
system, and

3. semi-automatic Al-based techniques for conceptual indexing of documents using case-frame
representations.,

5.3.2 INDEXER

We are now developing a plan to go beyond the traditional kinds of clectronic document indexing exemplified
by the topic cataloging and inverted word indexing techniques available in our first prototype, the DEARS system,
Our primary goal in this research program is based on what we fec! is a pressing need for exploration of the use of
Al knowledge representation techniques in the pursuit of more machine intelligent document indexing and retricval
behavior. The strategy we will employ is based on the supposition that by encoding summaries of document content
in declarative representations built on a lattice of concepts and relations, one may provide far more accurate
retrieval behavior and account for more of the variations in expression that occur in iinguage than is presently

32

BBN Systems and Technologies Corporation

possible using techniques that rely on the appearance of particular words or even sets of words. Our approach is not
to throw away what can be achieved by those techniques, but to augment them with these more precise forms of
indexing.

The results of our effort will be a new systerﬁ, built as a companion to the DEARS system, that will provide a
much more sophisticated set of mechanisms and interface tools to support human indexers of documents, and an
"expert system" of general heuristic and domain dependent rules to guide searches of the document concept space.
This system we call INDEXER, which stands for "Intelligent Document Encoding and indeXing for Enhanced
Retrieval”.

In implementing this strategy, we face the problem of encoding the content of documents to a "sufficient"
degree without the availability of a fully general natural language understanding technology. Our approach is to
provide a version of sophisticated user-interface that will automatically recognize most of the known terms and key
phrases of the domain, and allow human indexers to deal more quickly and thoroughly with the ambiguities and
questions of prioritization or relevance of different portions of the text.

This interface will be closely coupled to a version of KREME running on a SUN workstation. All of the
concepts and relations that are used for indexing will be represented in KREME, and these representations will then
be used to index documents, and clusters of documents,

5.3.3 Initial Study

In preparation for the full scale development of this, we have worked with the revised KREME system,
developing an initial knowledge base of terms that will support indexing of documents in the technology assessment
domain. A graph of this concept base is included in Appendix B. We are now working to connect a key phrase
recognizer to this KREME knowledge base.

33

BBN Systems and Technologies Corporation

6. Conclusion

This report has reviewed work done under Phase Two of the BBN Knowledge Acquisition Contract. The
overall goal of this project was to build a versatile experimental computer environmen for developing and
maintaining large knowledge bases. We have pursued the goal along several complementary paths. First, we have
constructed (several versions of) a flexible, extensible Knowledge Representation Editing and Modeling
Environment (KREME), in which different kinds of representations could be developed and maintained. In building
and equipping this "sandbox" we have been adapting and experimenting with techniques which we think will make
editing, browsing and consistency checking for each style of representation easier and more efficient, so that
knowledge engineers and subject matter experts can work together to build significantly larger and more detailed
knowledge bases than are presently practical.

The second path has been in investigating a variety applications of these techniques, bringing different
representational and user interface constraints to bear. Out of our preliminary efforts, a number of applications have
grown that use many of the component pieces of software found in the original KREME system. Chapter 5 has
looked at some of these.

A primary focus during Phase Two of the project has been improving the flexibility, from a user’s point of
view, of the KREME system, and also the portability and technology transfer opportunities for KREME technology.
This is evidenced by the new interface described in chapter 2, our extension of the language semantics in chapter 3,
and in our conversion of KREME to CLOS and investigation of a full integration of KREME semantics with the
CLOS meta-object protocol, as discussed in chapter 4.

Given the range of experiences we have had with KREME in the past two years, we expect that much of the
technology developed on this project will find its way into new and exciting applications for DoD in the years to
come.

35

BBN Systems and Technologies Corporation

Appendix A
Test Plan

Loading KREME from Cassette Tape

Each site can test KREME by loading KREME from tapes according to the directions in this Appendix and
then editing the sample networks provided on the tape. Once KREME has been loaded, the document The KREME
User’s Manual BBN Report 7175 provides instructions on how to edit and create knowledge bases using KREME.

KREME requires a Symbolics machine with Genera 7.2 or better already installed. If your machine has no
tape drive, you will have to read the tapes on another machine that does have one and then transfer the files to the
machine you wish to use.

There are two tapes provided. One is a Carry tape with some predefined translations files. This tape should
be loaded first using the‘(tape:carry-load) command as described in Volume 0 of the Symbolics manual. This tape
contains sample networks which should be placed in a directory with logical name NEWKREME:DEFS;* ¥, and
real name YOUR-HOST:>newkreme>defs>, where YOUR-HOST is the machine that will house all of KREME
system. The other files are files to go into the SYS:SITE; dircctory. These are translations files for the component
systems of KREME. Each of these SYS:SITE;*. TRANSLATIONS files must be edited to replace the machine
name CONGER: with the name of your local machine that is to hold the KREME system files.

The second tape contains all of the files comprising the KREME system this tape should be placed in the tape
reader after the edits described above have been made. Then, by issuing the Restore Distribution command (also
found in Volume O of the Symbolics Manual) the tape will be loaded into the host machine that you specified in by
replacing the CONGER: in the SYS:SITE;*. TRANSLATION files.

Once all files have been loaded, simply do the following two commands:

Load System CLOS :version Newest
Load System NewKREME :version Newest

When this operation has completed, simply hit <Select>-K, and you will be in the KREME system. Once this
is done, follow the directions in the KREME User’s Manual.

DISTRIBUTION LIST

RADC/COTS
ATTN: Sharon M. Walter
Griffiss AF3 NY 13441-5703

33N Systems and Teachnology Corp
10 Moulton Street
Cambridge MA 02138

RADC/DOVL
Technical Library
Griffiss AF3 NY 13441-5700

Administrator

Defense Technical Info Center
DTIC=FDAC

Caneron Station Building S
Alexandria VA 22304-6145

Defense Advanced Research Projects
Agency

1400 Wilson 8lvd

Arlington VA 22209-230%

HQ USAF/SCTT
washington DC 20330-5190

SAF/AQSC
Pentagon In 4D 2679
Wash DC 273%3¢

Naval darfare Assessment Center
GIDZP Jdnarations Center/Code 3(6G
ATTN: £ ichards

Corona A 91722

DL-1

e

HQ AFSC/XTH
Andrews AF3 MD 2G334=5300

HI SAC/SCeT
OFFUTT AF3 NI 48046

BTESA/RAE
ATTH: Mr. Larry G.McYManus
Kirtland 4F3 NM 37117-5009

HO TAC/DRIY
ATTN: Mr. Westerman
Langley AFS VA 23665-5575

HQ TAC/DOA
Langley AFB VA 23465~5554

WRDC/AAAL-S
Wright-Patterson AfS OH 45433-6543%3

WRDC/AAAL =2
ATTN: M™Mr Franklin Hutson
APAF3 OH 45431-6543

AFIT/LDES
Building 542, Area 3
Wright-Patterson AF3 0OH 45633-6583%

WRDC/MT=EL
Wright~Patterson AF3 OH 45433

DL-2

AAVRL /HE
dright-Patterson AF8 OH 45633-4573

AUL/LSE
3ldg 1405
Maxwall AFB AL 36112-5564

H3 ATC/TTOI
ATTN: Lt Col Killian
Randolph 4F9 TX 73150-5001

AFLMC/LGY

ATTN: Maje. Shaffep
3uilding 295

dunter AFS AL 35114~6693

US Army Strategic Def
CSSD-I¥-PA

PQ Box 1500

Huntsville AL 35807-3831

0fc of the Chief of Naval Operation
ATTN: William J.Cook

Navy Electromagnetic Spectrum Mgt
Room 544738, Pentagon (0P=-941)

Wash DC 20350

Commanding Officer

Naval Avionics Center
Library D/765

Indianapolis IN 44219~2139

Commanding Officer

Naval Ocean Systems Center
Technical Library

Crq¢ 96421

33n Diego ¢4 92152-5007

{nir

Naval 4e3sons Center
Technical Library/c3431
China take CA 93555-60951

DL-3

-

Superintendent

Carda 1424

Naval Postgraduate School
donterey CA 93943-5003

-

Soacg % ‘iaval Jarfare Systems Comm
Washington D¢ 20363-5120

CDRs UeSe Army Missile Command
Redstone Scientific Info Center
AMSMI-3D~-CS-R/ILL Documents
Qedstone Arsenal AL 35898-5241

Advisory Group on Electron Devices
291 varick Street, R/m 1149
New York NY 10014

Los Alamos National Laboratory
Report Library

MS 5000

Los Alamos NM 87544

AEDC Library
Tech Files/M5-100
Arnold AfF3 TN 373829

Commanders USAG
ASQH=-PLA-CRL/Tach Libp
gtdqg 61301

Ft Huachuca Al 35613-6300

1339 EI1G/E17
Kessler AFS3 MS 39534-4348

AFEWC/ESRI
San Antonio TX 78243-5000

DL-4

nNJ

485 £I5/51R
ATTN: § Suzinski
Griffiss afs NY 13441-6343

ESD/XARR
Hanscom AF3 Ma 01731-5000

ESD/AVSE
ATTN: (Capt Lesieur
Hanscom AF3 MA 91731-5000

£E30/7SIm
Hanscom AF3 ¥A 01731-5000

SEI JPD

ATTN: Major Chartles 4. Ryan
Carnegie Mellon University
Pittsburgh PA 15213-3390

Director NSA/CSS
TS13/70L

ATTN: D W Marjarum

Fort Meade MD 20755-6000

Director NSA/CSS

Wwis?

9800 Savage Road

Fort Meade MD 21055-6000

NSA

ATTN: Do Alley

Div X911

9330 Savaje Road

Ft Meade MD 20755~56000

Director

NSA/CSS

411 DEFSvAC

ATTN: 9Yr, Mark £, Clesh

Fort George G. Meade M) 20755-6007°

DL-5

[

dod

R31

9330 Savage R0ad

Fte Meada MD 23755-6000

DI]NSA

R509

9390 S3vage Road
Ft Meade D 20775

Director
NSA/CS3S
RO3

Fort George G. “Meade MD 23755-4000

DL~6

